‘ DIFFERENTIAL DYNAMIC PROGRAMMING FOR ESTUARINE MANAGEMENT

By Guihua Li* and Larry W. Mays,2 Member, ASCE

ABsTRACT: A differential dynamic programming (DDP) procedure is applied to solve both linear and non-
linear estuarine-management problems to determine the optimal amount of freshwater inflows into bays and
estuaries to maximize ﬁshery harvests. Fishery harvests are expressed in regression equations as functions of
freshwater inflows. The optimization problem is posed as a discrete-time optimal control problem in which
salinity represents the state variable and freshwater inflow represents the control variable. Both linear and
nonlinear regression equations that relate salinity to freshwater inflow are used as the transition equations.

The bound constraints for the control and state variables are incorporated into the objective function using a
penalty-function method to convert the problem into an unconstrained formulation. To guarantee the quadratic
convergence of the DDP procedure, a constant-shift and an adaptive-shift method are used. The DDP pro-
cedure is applied to the Lavaca-Tres Palacios estuary in Texas and the results are compared with a nonlinear
programming solver. This work demonstrates the potential of DDP for developing a more complex model

that uses a two-dimensional hydrodynamic-salinity transport mode! for the transition.

INTRODUCTION

In many areas of the United States, particularly the Gulf
coast states and California, estuaries are important natural
resources because they provide areas of nursery habitats for
juvenile forms of marine species, for sport and commercial
fishing, and for other recreational activities.

The ecosystem of an estuary is largely dependent on the
amount, as well as the seasonal and spatial distribution of
freshwater inflows and the associated nutrients. Freshwater
inflows enter the estuary from rivers and streams and from
local rainfall runoff. Freshwater dilutes the saline tidal water
seaward and transports nutrient and sediment that maintain
marsh environments and contribute to the estuarine produc-
tion of fish and shellfish.

An estuarine system is complicated because of the inter-
action of many physical, chemical, and biological parameters.
Among the parameters influencing estuarine productivity, many
are beyond our control, such as wind and temperature. Es-
tuarine management is a means to maintain the estuary system
in a desired condition by adjusting the controllable param-
eters. Since freshwater is one of the most important param-
eters to the estuary system, in essence, estuarine management
is to manage freshwater resources in order to provide an
optimal estuarine environment. The specific action of es-
tuarine management can be in several forms, such as mini-
mizing the total volume of freshwater into an estuary, max-
imizing the upstream water uses, or maximizing the commercial
fishery harvest.

In this paper, the mathematical programming model for
estuarine management is reformulated as a discrete-time op-
timal control problem. The differential dynamic programming
(DDP) method is used to solve the problem. The objective
function is the enhancement of fishery harvest, i.e., to op-
timize the freshwater inflow into bays and estuaries to max-
imize the total annual commercial harvest of selected fish
species while meeting the viability limits for salinity, and sat-
isfying monthly and seasonal freshwater inflow needs. The
madel is applied to the Lavaca-Tres Palacios Estuary in Texas
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(see Fig. 1) The computer mode! developed using the DDP
method can provide a useful tool for decision makers to quan-
titatively analyze water-management strategies. The major
purpose of this paper is to demonstrate the potential of the
DDP for developing a more complex model that uses a two-

dimensional hydrodynamic-salinity transport model for the
transition.

ESTUARINE MANAGEMENT

The estuarine condition resuits from the interaction of sa-
linity, nutrients, and key organisms with factors such as tide,
wind, precipitation, evaporation, and some unique conditions
associated with the specific estuary. The primary indicators
are salinity and nutrients. Salinity is an index, which has been
well established to indicate ecological conditions in an estu-
ary, because it can measure the relative proportion of fresh-
water to sea water. The lower and upper salinity bounds for
a specific organism are set based on either the presence of
that organism in the estuary as reflected in the catch data and
corresponding salinity value, or on the salinity physiological
dependence for viable metabolic and reproductive activity as
revealed by laboratory studies. The mathematical relationship
between salinity and freshwater inflow in the estuary is de-
veloped based on statistical association, i.e., a regression form
established from field data by the Texas Water Development
Board (Texas 1980).

In the estuaries of Texas, a direct measure of organism
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FIG. 1. Lavaca-Tres Palacios Estuary in Texas
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TABLE 1. Regression Equations of Fishery Harvest and Fresh-
water Inflow Relatlon (Texas 1980)

Inflow used in regression
Spices Equations ‘equation
(1) . 2 &
All shellfish |H, = 3107.9 - 11.3QS,*|Freshwater inflow at Lavaca
+ 7.708.° ~ 24.205,%f Bay
All penaeid |H, = 1735.8 — 3.7QS, |Combined freshwater in-
shrimp + 2.70S, - 1.00S; flows from all contribut-
.’ ing rivers and coastal
drainage basiis
Blue crab  {H, = 208.3 + 2.7QS; +|Combined freshwater in-
0.405¢ + 0.50Ss flows from all contribut-
ing rivers and coastal
drainage basins

*January-March.
*April~June.
“July-August,
4September—October.
*November—-December.

abundance is available on the data of commercial fishery land-
ings taken from the estuary. This fishery harvest data can be
employed as an index to populations of key organisms and
can be statistically analyzed to establish its dependence on
freshwater inflow, H, = f(Q). The regression equations of
fishery harvest and freshwater inflow are listed in Table 1
and were developed by the Texas Water Development Board
(Texas 1980). [In Table 1, H, is the commercial harvest in
thousands of pounds (1 Ib = 0.45 kg), and QS; is the mean
monthly freshwater inflow during the season in 1,000 acre-ft
(1 acre-ft = 1,233.5 m%).]

The estuarine management problem can be formulated with
different management objectives or even as a multiobjective
problem. One of the objectives is the enhancement of fishery
harvest of selected fish species while meeting the viability
limits for salinity and satisfying monthly and seasonal fresh-
water inflow needs. The mathematical model can be ex-
pressed as follows:

max » H, (1)

S.; = BuQ% @

0,=0,=0, ©)

S.;=8,;=$, 4)

_ 05, = 0S;, = TS, 5)

where H, = fishery harvest for the kth species (1,000 1b or
1,000 kg); Q,; = tth monthly inflows from the jth river (cfs
or ms); S,; = tth monthly average salinity at a specified
location in the estuary, for river j (ppt); B, and B, = coef-
ficients; S,; and S,; = upper and lower limits on monthly
average salinity at a specified location in the estuary, for river
J (ppt); Q.; and Q,; = upper and lower limits of monthly
freshwater inflow (cfs or m¥s); QS; , = mean monthly flow
in season n from river j (cfs or m*s), where 9S;, = (UN,)
Ziem, Qrj» M, is the set of months in season 2 and N, is the
number of months in season #; and QS; , and QS; , = upper
and lower limits, respectively, on the mean monthly fresh-
water inflow in season n from river j (cfs or ms).

Eq. (2) defines the relation of the state variable (salinity)
and the control variable (freshwater inflow) at time ¢. Con-
straint (3) defines bounds on the monthly inflows. Constraint
(4) defines bounds on the monthly salinity, and constraint (5)
defines bounds on the monthly inflow during the season.
Alternatively, the objective function (1) could be substituted
to minimize freshwater inflow with the same constraint set.

Martin (1987) was the first to formulate this problem as an

optimization problem and solved it using linear programming.
This problem was also solved as a chance constrained non-
linear programming problem by Tung et al. (1990) using GRG2
(Lasdon and Waren 1986). Bao (1992) and Bao-and Mays
(1994) solved the estuarine problem as a discrete-time optimal
control problem using a mathematical programming approach
interfacing GRG2 with the two-dimensional hydrodynamic-
salinity transport model HYD-SAL (Texas 1980). Mao and
Mays (1994) formulated the estuarine-management problem
as a multiobjective goal programming problem and solved it
using the nonlinear solvers, GAMS (Brooke et al. 1988) and
GRG2. Other muitiobjective models for the estuarine-man-
agement problem were developed by Shi (1992), LeBlanc
(1993), and Siebert (1993).

In this paper, the DDP method is applied to the Lavaca-
Tres Palacios Estuary in Texas, shown in Fig. 1. The mag-
nitude of freshwater inflow is one of the most important fac-
tors controlling the changes in estuarine salinity patterns. The
main freshwater inflow sources considered are the Colorado
River, which principally influences Matagorda Bay, and the
Lavaca River, which principally influences Lavaca Bay. The
freshwater inflow in this estuary is controlled by releases from
the upstream reservoir of the Highland Lake System in the
Colorado River Basin and Lake Texana in the Lavaca River
Basin. The main advantage of the DDP method is that no
discretization of the control and state space is used as com-
pared with dynamic programming. The computational effort
to solve for a nonsteady control policy increases only linearly
with the number of time steps N. In contrast, when using a
nonlinear programming algorithm, the computational effort
to solve for a control policy that changes with time would
increase rapidly, typicaily N%, where 2 < R < 3 (Culver and
Shoemaker 1992). Therefore, the DDP method may have an
advantage over mathematical programming approaches, es-

pecially when the equality constraint is a complex simulation
model.

ALGORITHM DESCRIPTION

DDP algorithms have been used in water-resources appli-
cations such as reservoir operation and ground-water-man-
agement problems (Chang et al. 1992; Culver and Shoemaker
1993). Unconstrained discrete-time optimal control problems
have the following general form:

N
minJ = D g(x, u, 1) (6)
—t=1

subject to X,,, = T(x,, u,, f)

@)

t=1,2,...,N -1, N, x, =x§is given and fixed, where
X, = state variable; u, = control variable; g(x,, u,, f) = loss
function; and T(x,, u,, {) = transition function.

The DDP algorithm is an iterative algorithm in which, at
each iteration, there are two sweeps. (1) A “backward sweep™
to compute a series of coefficients following the dynamic pro-
gramming optimal scheme; and (2) a “forward sweep” to
update the sequences of state and control variables (x,, u,)
through the transition equation and the feedback function u,
= q, + B(x, — x{) + uf forward in time. An algorithm
description of the DDP algorithm was given by Yakowitz and
Rutherford (1984).

The practical optimal control problems often include con-
straints that can be expressed as

L(x,u,0)=0 (8)

Several techniques can be used to handle the constraints (Jones
et al. 1987; Yakowitz 1989; Andricevic and Kitanidis 1990;
Chang et al. 1992). One technique is through the use of a
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penalty function in which the penalty function P(x,, u,, f, R)
s associated with the violation of constraints and is added to
the objective function. There are many kinds of penalty func-
tions that can be used. Some penalty functions are compli-
cated, and include the estimation of many parameters. Here,
a very simple penalty function, a bracket penalty function
(Reklaitis et al. 1983), is selected in the algorithm description
and model formulation. In the appljcation, the Lagrangian
penalty function (Luenberger 1984)"and the hyperbolic pen-
alty functions (Lin 1990) are also used to compare the effect
of different penaity functions.
The bracket function has the following form:

P(x,, u, t, R) = R-[L(x,, u, O 9

where R = a penalty parameter, which is a numerical value
that must be assigned; and {L(x,, u,, {)) = constraint viola-
tion.

[L(x,u, 8] =0, if L(x,u,f=0 (102)
[L(x,,u, 8] = L(x,,u,, 1), if L(x,u,8) <0 (106)

The penalty function is added to equation (6) so that the
augmented objective function becomes

, |
minJ = Y G(x,, u, t, R) (11)

=]

where

G(x" ul’ " R) = g(xl' uf’ t) + P(xf! ur! t’ R)

The step-search technique of the DDP method by Yakowitz
and Rutherford (1984) for unconstrained problems is now
briefly described. ¢ is defined as a positive number, and the
policy u(e), associated with the components (a,, 8,), is de-

termined by the following recursive formulas applied for ¢t =
L2....,N

ll,(E) = uf + eq, + Bl(xl - Xf) (12)
Xeer = T[x, u,(e), ¢] (13)
The procedure initially sets ¢ = 1 and defines 8, as
1 N
=3. 2 7C/'D, (14)

where C, D,, «,, and B, = matrices of coefficients defined
by the current control policy and trajectory. If the following
relationship is satisfied:

Vo) - ) < b (13)
then u(e) is accepted as the successor policy and is used in
the next DDP iteration. Otherwise, ¢ is redefined to be one-
half its former value and the policy u(e) and the test defined
by (15) are again computed. This process of halving € and
computing and testing u(e) continues until acceptance occurs.
But for the constrained problem, this step-search technique
of finding the optimal policy needs to be modified. When the
control or state variable “step outside” the constrained region
(Murray and Yakowitz 1979), the positive penalty terms are
added to the objective function. The successor policy u(e)
may result in a worse objective function value than the current
control policy u®. If using (12) and (13) u(e) converges to
such a nonoptimal policy, then the step-search technique fails
for the constrained problem, especially when the initial policy
is far from an optimal policy. Only when an initial guess is
sufficiently close to an optimal policy can the optimal control
policy be reached. Thus, much work must be performed to
find a suitable initial policy so that the sequence u(e) con-
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‘verges to an optimal policy. To overcome this problem, the

step-search technique of the unconstramed DDP method is
modified as follows:

Step 1

Give the inner optirnal convergence criterion €, the overall
convergence criterion 0,,,, and the bound vxolatxon criteria,
modify (12) and (13) as follows:

u, = + B(x - x5+ us - (16)
U, = T(x,u,t) 17

The test (15) is modified as
m;ax]u, -uf =g (18)

If (18) is satisfied, the DDP inner optimal is reached. If (18)
is not satisfied, update the current control policy and the test
(18) is again computed until the inner optimal is reached.

Step 2

If |6,] = Byyiq [0, is defined by (14)], the overall optimal is
reached. Otherwise, check whether the bound violations sat-
isfy the given criteria. If the criteria are satisfied, keep the
same penalty parameters. otherwise update the penalty pa-
rameters and repeat the iteration process until an overall
optimal is reached.

Computational results show that the modified step-search
technique can make the constrained DDP procedure con-

verge to an optimal control policy. The flowchart of the mod-
ified DDP method is shown in Fig. 2.

MODEL FORMULATION

To formulate the optimal control problem, the objective
function must be separable. In the estuarine-management
model, the objective function is to maximize the summation
of fishery harvest. Fishery harvest is expressed in terms of
mean monthly freshwater inflow per season, as illustrated in
Table 1. Three fish species are considered for the objective,
i.e., all shellfish, all penaeid shrimp, and blue crab. These
regression equations were developed by the Texas Depart-
ment of Water Resources (1980). A separable objective func-
tion can be obtained by replacing the monthly freshwater
inflow in each season with monthly freshwater inflows as

[Sclu:lniﬂd\lalnzmd?cnal!y?mmms }
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FIG. 2. Flowchart of Modified DDP Method
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N m
maxJ = 2 2 g(QI./" t)

tmi jumi

(19)

where g(Q,;, f) = (a,; + b,;Q,;) = regression equations
expressed in terms of freshwater inflow; 4, ; and b, ; = coef-
ficients that are given in Table 2; N = time period; and m
= dimension of the control variable. It is convenient to trans-
form the maximization into a mjnfmization; thus, the objec-
tive function for the estuarine-management problem becomes

minJ = - i 8(Q.j» 1)

=1 j=1

(20)

The DDP method requires the state transition equation to
represent the relationship of the state variable at time ¢ and
attime ¢ + 1. In the estuarine-management problem, salinity
is chosen as the state variable, and monthly freshwater inflow
is chosen as the control variable. For the sake of illustration,
both linear and nonlinear. regression equations serve as the
state transition equations for the DDP model. The transition
equations were derived from historical data (Texas 1980).
Both linear and nonlinear state transition equations of the
following format were used:

SH-I./‘ = d; + b;'Su + C;Q:.i (21)
Sy =& + bS,; + 0, + d;S,,Q0.; + €;S%; + fiQF;
(22

where a, b, ¢/, gf, b}, cj, d, e], and f] = coefficients that
are determined by the least-squares method and are listed in
Tables 3 and 4; §,;and S, ; = salinities (ppt) corresponding

TABLE 2. Coefficients a,; and b,, in Objective Function

8y, by,
Lavaca Matagorda Lavaca Matagorda
Month Bay Bay Bay Bay
(1) @ &) 4 (5)
January 463.06 74.57 ~0.307 -0.076
February 455.05 66.56 -0.278 -0.068
March 464.3 75.81 -0.307 -0.076
April 531.18 142.69 0.206 0.054
May 559.98 171.49 0.213 0.055
June 552.33 163.84 0.206 0.054
July 427.45 38.96 -0.661 " 0.083
August 427.9 39.41 -0.661 0.083
September 32.46 32.46 0.012 0.012
October 31.66 :31.66 0.012 0.012
November 120.97 120.97 -0.015 -0.015
December 118.6 118.6 -0.015 -0.015

TABLE 3. Coefficients of Linear Transition Equations

to the beginning of months ¢ and ¢ + 1 for river j; and Q,;
= ¢ monthly freshwater inflow (cfs or m¥s) from river j.

The bound constraints on monthly freshwater inflow and
the bound constraints on monthly freshwater inflow in each
season can be combined together as the bound constraints of
the control variable (freshwater inflow)

max(_Q_l.i) gi.n) = Qt.j = min(Ql.i' _Q-§i.n) (23)

. where 0S; , and 53',.‘,, = lower and upper bounds of mean

monthly freshwater inflow in season n, respectively. Let
Qi = max(Q,; 95;,) and Q; = min(Q,;, 0S;.)
then the combined bound constraints on monthly freshwater
inflows are

0,=0,<0, (24)

The values of combined bound constraints for monthly fresh-
water inflow are listed in Table 5.

Using the bracket penalty function, the penalty term as-
sociated with combined bound constraints on control varia-
bles is )

P, = R,-(min{0, min[(Q,‘,. - _Q_:',i)v (Q:’, - Qz.i)]})z (25)

According to the DDP algorithm, it is known that §,..,; is
determined by S, ; and Q. ;, and that meanwhile S,. . , should
also satisfy its bound constraint, i.e., S;4y; =< S0 1; = Sier e
This means that the control variable Q, ; is determined such
that S, ; is also within its bounds. The value of the salinity
bound constraints are listed in Table 6. The penalty term
associated with the bound constraints of the state variables
is :

PZ = RZ'(min{09 min[(su-l.i - §_1+l.i)a (Sl+l.i - Su-l.i')]})2
(26)
After introducing the penalty function into the objective

function the augmented optimal control model is represented
as

N m

minf = Y ¥ G(Q,, S, t, Ri. Ro) 27
tm] jaml

subject to S,y ; = T(S,;, Qo 1) (28)

where G(Q,;, S.;» t, Ry Ro) = —g(Q.;, 1) + P, + P; and
P, and P, = defined by (25)-and (26), respectively. The
transition (28) is defined by (21) or (22) for linear or nonlinear
transiton equation, respectively, for the example application
presented here. Other forms of nonlinear transition equation
could also be used.

CONVERGENCE OF DDP PROCEDURE

Coefficients To guarantee the quadratic convergence of the DDP pro-
Sum of cedure, it is required that the stage-wise Hessian matrices C,
, squares of computed in the algorithm are positive-definite; otherwise
Aivers a by ¢ residual the DDP procedure may not converge. Two methods are
() @ @) “ ©) employed to obtain the positive definite Hessian matrices C,
Colorado River | 1.323 0.611 0.002 222111 in this paper. A constant-shift method and an adaptive-shift
Lavaca River 4751 0.641 0.001 2.183 method. The constant shift method is as follows:
TABLE 4, Coefficlents of Nonlinear Transition Equations
Coefficients
Sum of squares
Rivers ay by c/ d . e/ T of residual
1) () 3) 4 (5) (6) @) 8)
Colorado River 0.0531 3.0014 -0.0147 0.0007 -0.1539 0.0000029 12.6572
Lavaca River 37.7043 ~1.7045 0.0024 ~0.0014 0.1004 0.0000057 6.9212
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TABLE 5. Cbrﬁbined Bounds of Freshwater Intlow

. Lavaca River Colorado River
Lower Upper Lower Upper
bounds bounds bounds bounds
Manth (cfs) (cfs) (cfs) (cfs)
(1) () 3) {4) ()
January 37 1,903 293 3,009
February 41 2,107 » 324 3331
March k1) 1,903 293 7,500
April 62 6,400 392 7,600
May 60 7,300 379 8,863
June 62 8.286 392 9,209
July 114 & 7] 276 6,017
August 114 732 276 2,900
September 294 3272 387 5,024
October 285 3,166 374 4,879
November 114 1,739 573 7,865
December 111 1,683 496 6,200

Note: 1 cfs = 0,0283 m¥s.”

TABLE 6. Salinity Bounds of Upper Lavaca Bay and Eastern Arm
of Matagorda Bay

Lavaca Bay Matagorda Bay
{Lavaca River) {Colorado River)

Lower Upper Lower Upger

bounds bounds bounds bounds

Month (ppt) (ppt) (pet) (ppt)

(1) (2) (3) (4) )
January 10 20 10 30
- February 10 20 10 30
March 10 20 10 25
April 5 15 5 20
May 1 15 5 20
June ! 15 5 20
July 10 20 10 235
August 10 20 10 25
September 5 15 5 20
Qctober 5 15 5 20
November 10 20 10 30
December 10 20 10 30

Note: Principal river shown in parentheses.

Pick a constant & > 0 (&° is independent of £) such that
C¢ is positive-definite where C¢ is defined as

—  Ci=C, + ¢, (29)

where &° = a positive number; and I, = identity.
The adaptive-shift method suggested by Liao and Shoe-
maker (1991) to obtain positive-definite Hessian mamces C

was used. The main steps are as follows:

1. Adopt the constant-shift method
2. For a given constant 3 > 0, define C{ as follows:

Ce = C, + (3L, (30)
where
. d = MC), ifMC) <3
5= {o, if MC) = 3 @)

AMC)) = minimum eigenvalue of C,.

The adaptive-shift method consists of a constant shift pro-
cedure (step 1) and an active shift procedure (step 2). For a
linear transition equation, the convergence speed of using the
adaptive-shift method is faster than that of using the constant-
shift method. For a nonlinear transition equation, compu-
tational results show that use of the adaptive-shift method
does not always result in positive-definite Hessian matrices

because of the numerical problems. Therefore, the constant-
shift method is suggested for a nonlinear transition equation.

SELECTION OF PARAMETERS

When using the constant-shift or the adaptive-shift methods
to modify C,, parameter &° has a significant effect on the
convergence speed of the DDP procedbre. If & is too small
the procedure can become divergent because of numerical
problems. If &¢ is much larger, the convergence speed is very
slow. Generlly, £ should be adjusted according to the prac-
tical problem. The first derivative of the ob]ecnve function,
with respect to the control variable GQ(Q, i Sty Ry Ra),
has some relation to &°. If Go(Q., ;, S, i» Se.j» b Ry, Rp) is small, €
should also be small so that the number of iterations to reach
the optimal solution for each time ¢ is as small as possible.

In the estuarine-management problem, &° is chosen as fol-
lows: :

= 0.00001 if ]GQ(Q:J’ Sl.i’ Rlv RZ’ t)‘ = 0‘1
g = 0.0001 if|Gp(Q.; S.jo Ry Ray )] > 0.1

The parameter 3 in the adaptive-shift method, just like ¢°,
has a refation with the first derivative of the objective function
with respect to the control variable GQ(Q, i S.j» Ry, Rau t).
For the estuarine-management problem, 3 is chosen as

8 = 0001 if|{Gy(Q.; S Ris Re, )] = 0.1
= 0.002 if|Gy(Q.), S.» Riy Rau )] > 0.1

M, is the number of iterations of the constant-shift pro-
cedure when the adaptive-shift method is used. If M, is too
small, the control policy may be far from the optimal policy.
Therefore, when switching to an active-shift procedure. the
convergence speed is very slow. If M, is too large, there can
be many useless iterations. A suitable M, should be a value
such that the total number of iterations is as small as possible.
M, = 10is suggested for the estuarine-management problem.

It is known that when penalty parameters approach infinity,
the penalty terms approach zero. However, for practical prob-

(32)

(33)

_ lems, it may not be necessary to make penalty parameters go
-to infinity. The values of R, and R, should be such that the

penalty terms on state variables and control variables have
the same level of effect on the objective function. In the
estuarine-management problem, the control variable, fresh-
water inflow, has the order of 10* and theState variables have
the order 10!. Therefore, R, should have a larger value to
force these two penalty terms to reach the same level of
penalty as the objective function. The values of R, = 10 and
R, = 10,000 were used. R, and R, are updated according to
the following method:

Re*' = AR-R%;  R&*' = AR,-R% (34, 35)
where k = number of iterations and
AR, =10 when max{max(|Q.; — 2/ /1,10, = QI = &
T (36a)
AR, =1 when max [max(|Q,; = Qi1. 10!, - Q1) < £g
| (365)
AR, = 10 when max [max(|S,; = S|, 13!, = S,;Dl = &
N (37a)
AR, = 1 when max [max(|S,, = S/, 157, = S.;D] < es
! (376)

where ¢, and 5 = given bound violation criteria for fresh-
water inflow and sahmty, respectlvely
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" APPLICATION

The DDP method for linear and nonlinear transition equa-
tions is applied to the Lavaca-Tres Palacios Estuary in Texas.
The optimal monthly freshwater inflows and fishery harvest
for linear and nonlinear transition equations are listed in Table
7. Results indicate that for the Lavaca River, the monthly
freshwater inflows in January, February, March, July, Au-
gust, November, and December are small in many cases and
are at the lower bounds. This.ds because the coefficients of
freshwater inflow in the fishery harvest equation (for all shell-
fish) are negative values. For the Colorado River, the fresh-

TABLE 7. Optimal Freshwater Inflows and Fishery Harvest for
Different Transition Equations

Linear Transition Nonlinear Transition
Equation Equation .
Freshwater| Freshwater | Freshwater| Freshwater
inflow from | inflow from{inflow from{inflow from
Lavaca | Colorade | Lavaca | Colorado
" River River River River
Month (cfs) (cfs) (cfs) (cfs)
(1) 4 Q) () (5)
January 37 293 37 424
February 1,112 324 41 1,934
March 1.283 293 37 837
April 3,784 6,070 2,442 1,619
" May 2,256 2,429 2,172 3,179
June 2.257 2,429 2,112 3,180
July 656 6,017 114 3.308
August 732 2,900 114 2,900
September 3272 653 2,184 1,966
QOctober 2.569 2,429 2,171 3,179
November 114 573 114 1,087
December 1.065 496 111 344
Harvest (1,000 1b) | 6.693 7,294

Note: 1 cfs = 0.0283 m¥s, 1 Ib = 0.4536 kg.

TABLE 8. Optimal Fishery Harvests for Different Transition Equa-
tions and Different Initial Values (Using Bracket Penaity Function)

R e S S —
. Optimal
| fishery
Transition Initial values harvest | Number of
equations | Cases . (cfs) (1,000 1b) | iterations
)] ) @) (4) {5)
Linear 1 Qiniiat = @ 6,693 14
o 2 | Quii=0 . 6,693 9
3 Qi = (12)(Q + Nl 6693 10
Nonlinear 1 Qi = 0 7,239 164
2 Qi = 0 7,033 1,830
3 | Qi = (U2)(Q + 0) | 7033 361

Note: 1 Ib = 0.4536 kg; 1 cfs = 0.0283 m?s.

TABLE 9. Optimal Fishery Harvest for Different Transition Equa-

tions and Different Penalty Functions (Q,u = Q)

Optimal
fishery
Transition harvest | Number of
equations Penalty functions (1,000 1b) | iterations
) @ 3) 4)
Linear Bracket penaity function 6,693 14
Lagrangian penalty functions| 6,696 29
| Hyperbolic penalty function 6,691 34
Nonlinear | Bracket penalty function 7,239 164
Lagrangian penalty function 7,246 344
Hyperbolic penalty function 7,287 322
Note: 1 1b = 0.4536 kg.

TABLE 10. Optimal Monthly Freshwater Infiows and Fishery Har-

vests for Linear Transition Equations Using Different Methodoio-
gies

e

MATHEMATICAL PRO-
GRAMMING METHOD
DDP METHOD* (USING GAMS)®
Optimal Freshwater Inflow | Optimal Freshwater Inflow
(cfs) {cts)

Lavaca Colorado Lavaca Colorado

Menth River River River River
() @ @) @ (5)

January 37 293 37 293
February 1,112 324 1,112 324
March 1,283 293 1,284 293
April 3,784 6,070 3,784 6,070
May 2,256 2,429 2,256 2,429
June 2,257 2,429 2,256 2,429
July 656 6,017 659 6,017
August 732 2,900 732 2,900
September 3272 653 32712 653
Qctober 2,569 2,429 2,569 2,429
November 114 573 114 573
December 1,065 496 1,065 496

Note: 1 cfs = 0.0283 m¥s; 1 Ib = 0.4536 kg; CPU times are for
personal computer MAG4865X33. The optimal fishery harvest under
both methods = 6,693 (1,000 Ib).

*CPU times (in seconds) = 0.73, and number of iterations = 14,

®CPU times (in seconds) = 6.12, and number of iterations = 33.

water inflow in January, February, March, November, and
December are relatively small.

The effects of initial values are indicated by three different
initial values (freshwater inflows). In the first case, initial
values are equal to the lower bounds. In the second case,
initial values are the upper bounds, and in the third case,
initial values equal the mean of the lower bounds and the
upper bounds. The results of these three cases for different
transition equations are listed in Table 8. Results indicate
that the optimal fishery harvests are the same for cases 2 and
3, but the case 1 results are different from those of case 2
and case 3 when using the nonlinear transition equation. Be-
cause of the nonlinearity of the transition equation, the so-
lutions are not unique. The number of iterations are different
for different initial values. The number of iterations for case
1 is the smallest and the number of iterations for case 2 is
the largest. For the linear transition equation, the number of
iterations reduces dramatically and the solution is unique for
different initial values.

To compare the effect of the penalty functions, the La-
grangian penalty function and hyperbolic penaity function are
also used. The results for different penalty functions are shown
in Table 9. Table 9 indicates that for the nonlinear transition
equation, optimal fishery harvests are different for different
penalty functions but the differences are small. The bracket
penalty function resulted in the smallest number of iterations
and the Lagrangian penalty function has the largest number
of iterations. For the linear transition equation, the optimal
fishery harvests are basically the same for different penalty
functions. The bracket penalty function has the smallest num-
ber of iterations and the hyperbolic penalty function has the
largest. The bracket penalty function seems to work well.

To compare the DDP method with the mathematical pro-
.gramming method, GAMS (Brooke et al. 1988) was also used
to solve the problem with the results listed in Tables 10 and
11. For the linear transition equation, the optimal freshwater
inflows and fishery harvest are the same using DDP and GAMS.
For the nonlinear transition equation, the optimal montbly
freshwater inflows are the same for the Lavaca River using
DDP and GAMS. The optimal monthly freshwater inflows
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, TABLE 11., Optimal Monthly Freshwater Inflows and Fishery Har-
vasts fac Monlinear Transition Equatlons Using Different Metho-
dologies

e

MATHEMATICAL PRO-
GRAMMING METHOD
DDP METHOD? (USING GAMS)®
Optimal Freshwater Inflow | Optimal Freshwater Inflow
(cfs) » 7 (cfs)

Lavaca Colorado Lavaca Colorado

Month River River River .River
(1) (2) ) (4) (5)

January 37 424 37 424
February 41 1,934 41 1,934
March 37 837 37 837
April 2,442 1,619 2,441 4,100
May 2,112 3,179 2,171 3,179
June 2,172 3,180 2,171 3,179
July 114 3,308 114 3,568
August 114 2,900 114 2,085
September 2,184 1,966 2,184 1,718
October 2.171 3,179 2,171 3,179
November 114 1,087 114 1,174
December 111 844 114 750

Note: 1 cfs = 0.0283 m%s; 1 Ib = 0.4536 kg; CPU times are for
personal computer MAG4865X33.

“Optimal fishery harvest = 7,294 (1,000 Ib), CPU times (in seconds)
= 3.32. and number of iterations = 164.

*Optimal fishery harvest = 7,378 (1,000 Ib), CPU times (in seconds)
= 7.98. and number of iterations = 280.

for the Colorado River are different for some months for the
two approaches. This indicates that for nonlinear problems,
the solutions are not unique. The number of iterations using
the DDP method is smaller than that using GAMS, which
indicates that the DDP method is better than the GAMS
method for the estuarine-management model. :

Changes in estuarine salinity patterns are a function of
several variables, including the magnitude of freshwater in-
flow, tidal mixing, density currents, wind-induced mixing,
evaporation, and salinity. The linear and nonlinear freshwater
inflow-salinity relationship can only be used to provide pre-
liminary estimates of the response of the estuary to proposed
freshwater inflows. The best salinity patterns can be simulated
by the hydrodynamic transport model HYD-SAL (Masch et
al. 1971) as used by Bao and Mays (1994). HYD-SAL solves
:he two-dimensional partial-differential equations of the flux
and salinity using the finite-difference method. Using the DDP
nethod presented in this paper, interfaced with HYD-SAL,
nay be advantageous over using the mathematical program-
ning methodology for the discrete-time optimal control prob-
em proposed by Bao (1992) and Bao and Mays (1994).

ONCLUSIONS

The DDP methodology has been successfully applied to
he estuarine-management problem. Four conclusions can be
irawn from the development and application of the model.

When the penalty function method is used for the con-
trained discrete-time optimal control problems, the modified
tep-search technique can result in the optimal control policy.

Use of the constant-shift and adaptive-shift methods to
btain the positive-definite matrices C, can guarantee the
uadratic convergence of the DDP procedure. Constant &°
nd 3 should be values that make the DDP converge faster
ith no numerical problems.

Different penalty functions have different effects on the
snvergence speed of the DDP procedure. For the estuarine-
anagement problem, the bracket penalty function works

ell. The hyperbolic penalty function also makes the DDP

IAHIDNAT AE WATER Doomrimama. oo T

procedure converge fast, but this function has several param-
eters that must be estimated

Compared with the mathematical programming code
GAMS, the DDP method converges with fewer iterations and
central processing unit (CPU) times.

If the transition equation is a complicated equation, such
as the finite-difference equation, using the DDP method should
be more advantageous. The next step in this research will be
to use the two-dimensional hydrodynamic-salinity transport
model HYD-SAL as the simulator to replace the simplified
linear or nonlinear transition equations described here. The
work in this paper aims to demonstrate the potential of DDP
to develop a more complex model that uses a two-dimensional

hydrodynamic-salinity transport model (simulator) for the
transition.
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